Linux networking

For Ganeti clusters
explained

Alexandros Afentoulis
alexaf@noc.grnet.gr

November 14" 2017

Why?

« Networking on Linux hosts is the bridge* between netops
and sysops

« We often need to track down packets fleeing from our
hands hosts

« I wish I had someone to briefly explain this to me when I
got here.

o Linux networking is awesome

* see what I did there?

Contents and goal

This session’s contents:

« Bonding physical interfaces
o vlans

» Bridged networks

« Routed networks

Focus on principles rather than specific to ganeti implementation or GRNET
automation.

Live demo’s goal:
« connect kvm virtual machines to the internet

Interface bonding

« Aggregate two or more physical interfaces into a logical
interface.

« Why? Maximize available bandwidth, availability, load balance
traffic.

« Needs 'bonding' kernel module

o ‘ifenslave’ package loads the module and brings helpful
management scripts, ip-link may be used too

« Various bonging modes, mostly interested in: active-backup and
active-active

« Bond interface inherits a member's mac address (the “lowest)

« Bonding is not the only way to aggregate interfaces. There is
“team” too, with userspace controller

Active-Backup Bonding

Simple

Offers fault tolerance, not maximum bandwidth
usage

No configuration needed on the switch side

Host's responsibility to pick the outgoing interface
Only a single interface active at any moment
Beware, do not bridge the physical ifaces
Problems? Can't recall really.

Active-Active Bonding

« 802.3ad or LACP.
Link aggregation offers maximum bandwidth capacity and load balancing.
Needs configuration from the switch side.

Various hashing policies, example layer3+4: /* Input: src_IP, dst_IP,
src_port, dst_port */ (outgoin traffic)

Network devices may use different hashing policy for incoming traffic
Problems?
— LACP failing to negotiate aggregator ID with Cisco Nexus

— Intel X540 NIC + Linux 3.16 + “Speed Unknown” for member, opened
Debian bug #851952

— QFX5100 was flooding packets to LACP hosts, leading to mac learning
mayhem on Linux bridge

Bonding configuration examples

Active backup:

1iface bond® inet static

address
netmask
broadcast
gateway
mtu
bond-mode
primary
slaves

83.212.4.210
255.255.255.224
83.212.4.223
83.212.4.193
9000
active-backup
enol

enol eno2

LACP:

1face bond0O inet static

address 83.212.4.210
netmask 255.255.255.224
broadcast 83.212.4.223
gateway 83.212.4.193

mtu 9000
bond-mode 802.3ad
slaves enol eno2

bond xmit hash policy layer3+4

Live Demo

Setup bond interface on hardware node

ip link add bond@® type bond

echo 1 > /sys/class/net/bond0/bonding/mode
ip link set ethO master bond0O

ip link set ethl master bond0O

ip link set bondO up

Vlans

« Virtual lans

 Give the ability to create multiple separate layer 2
broadcast domains over the same physical link

Why use vlans?
« network segmentation and management

« security (broadcast domain, ARP poisoning, mac address
spoofing)

« QoS, traffic manipulation

Vlans, how?

IEEE 802.1Q or Dotlg standard.
Use tags/ids in the ethernet frame header.

Network devices as well as physical hosts need to be
aware/configured to handle vlan tagged frames.

Vlans are implemented in switches, but are mostly
terminated in routers (vlan network gateway).

tcpdump’s ‘-e’ will reveal the packets’ vlan id

Vlans, how?

« A vlan aware interface may also carry untagged frames, these belong
to the "native" vlan.

o Forget 'vconfig' (and ‘'ifconfig') use 'ip' of iproute2 to create vlan
interfaces.

« The convention is that bond0.XXX interfaces in Linux correspond to
vlan id XXX.

« Packets arriving to bond0 will be "untagged" and be "available" in
bond0.XXX interface.

« Inversely packets sent out the bond0.XXX interface will be tagged
before getting out through bond0.

« Get only a specific vlan traffic with tcpdump?
- tcpdump -ni bond0 -Uw - | tcpdump -en -r - vlan 124

Vlans in Ethernet Headers

Live Demo

Create vlan interfaces on bond0

ip link add link bond®@ name bond0.992 type vlan id 992
ip link set dev bond0.992 up

Bridged networks

« Bridged networks is a way to interconnect vms via one or more linux
bridges.

o Linux bridges are essentially virtual switches
« What is switching? Map mac addresses to ports, forward frames accordingly

 Connect two (or more) Ethernet segments together in a protocol
independent way. Packets are forwarded based on Ethernet address, rather
than IP address

« On multiple hosts create a bridge for every vlan and add the vlan interface
as a member => vms on the same layer 2

« Do we need STP? No.

« Can be used to interconnect containers too (bridge + veth + namespaces,
hello docker)

o 'brctl' and 'bridge' commands to interact with the linux bridge.

Juniper
QFx 5100

hardware node hardware node

— — 8 e

~

vlanlod wlangga? . wlanlo4

AE; i =y ==

I ¥
bond0.104 bond0.992 - bond0 104) bond0.992
wlan992

fap interfaces

tap interface
s/

T o e e o e e e e Y

Bridged networks (2)

Bridged networks are simple and effective:
— minimum configuration

— nice bandwidth achieved

— expected networking features just work

Pros when vms reside on the same layer2:

— Broadcast works => ARP works

— Multicast works => VRRP works

Cons when vms reside on the same layer2:

— ARP poisoning, MAC address spoofing, IP address stealing

What happens when a vm migrates?

- MAC persists, ARP not changing, (juniper) switch sees mac on a different port

Problems?

- IGMP snooping enabled in 3.16 => neigbor solicitations dropped => IPv6 not working
within the vlan, summer 2015

— Once packets where flooded in juniper QFX5100 and got reflected, leading to mac learning
craziness (‘bridge monitor all’), early 2017

Bridged networks(3)

Config as simple as:

auto vlanlo4
iface vlanl04 inet manual
bridge ports bond0.104

- ena.test ~ # brctl show vlan992

bridge name bridge id STP enabled interfaces
vian992 8000.00262d0062f8 no bond0.992
tapO
= ena.test ~ # brctl showmacs vlan992
port no mac addr is local? ageing timer
1 00:00:0c:9f:f0:01 no 1.39
1 00:05:73:a0:00:01 no 2.69
1 00:26:2d:00:62:f8 yes 0.00
1 00:26:2d:00:62:f8 yes 0.00
2 02:61:dd:8d:15:2f yes 0.00
2 02:61:dd:8d:15:2f yes 0.00
1 64:a0:e7:42:ca:cl no 0.06
1 64:a0:e7:42:dc:cl no 16.35
2 aa:00:00:94:ed:49 no 5.52

Live Demo

Create bridge for vlan traffic

ip link add name vlan992 type bridge
ip link set bond0.992 master v1an992
ip link set dev v1an992 up

ip link set tap@ master vl1an992

Routed networks

Why “routed networks"”?

— Cloud is a zero-trust, hostile environment

— How to host different clients’ vms in the same subnet?
— Work around bridged networks weak points

No flat layer2 and no switching here
Host acts as a router for guest vms.

In practice, the host isolates vm from the broadcast domain => broadcast
and multicast from the vlan will never reach the guest vm

We still need vlans for different subnets

Need to apply a different routing policies
— both between different vlans
— and between a vlan and the host's management (native) vlan.

Routed networks (2)

Multiple routing tables, one for each vlan/subnet.

ip-rule rules to implement policy routing
— Lookup vlan’s routing table if incoming iface is tap or the vlan interface

Host need to fool everyone in the vlan:

— tells the vlan that it holds vms' IP address

— tells the vm that it holds gateway’s IP address
— proxy_arp and proxy_ndp

— arptables mangle source IP

What happens on vm’s migration?

— MAC address changes
 ARP needs update, GARP performed
 Neighbor solicitation too

Prevent IP spoofing with iptables rules in FORWARD chain
- -A FORWARD -i tap0 ! -s 62.217.124.52 -j DROP

Routed networks (3)

More complex configuration

Stateful with state not easily restored

No multicast, no VRRP

Zero visibility, this is clients’ vms, no Icinga here :'(

Problems? Lots.
— Multiple stale nd_proxy entries => IPv6 packets hopping around the DC

— GARP not being sent => IPv4 traffic routed with extra hop and potential
downtime

— Redundant/wrong iptables + ip6tables rules in FORWARD chain => downtime

— hardware node ARP replies for entire routed subnet after ‘ifdown bond0 ;ifup
bond0’

— etc etc

Routed networks
Live demo: convert the bridged vm to routed

vlan993, default gateway 62.217.124.49, arp ip 62.217.124.54, vm's IP 62.217.124.53

ip link add link bond® name bond0.993 type vlan id 993
ip link set dev bond0.993 up

echo "993 public 993" >> /etc/iproute2/rt tables

ip r add 62.217.124.48/29 dev bond0.993 table 993

ip r add default via 62.217.124.49 dev bond0.993 table 993

ip r add 62.217.124.53 dev tap@ proto static table public 993

echo 1 > /proc/sys/net/ipv4/conf/bond0.993/proxy arp

arptables -A OUTPUT -j mangle -0 bond0.993 --opcode 1 --mangle-ip-s 62.217.124.54
echo 1 > /proc/sys/net/ipv4/conf/tap@/proxy arp

arptables -A OUTPUT -j mangle -o tap@ --opcode 1 --mangle-ip-s 62.217.124.49

ip rule add iif bond0.993 lookup public 993
ip rule add iif tap0® lookup public 993

Networking at GRNET cloud

GRNET ViMA clusters:
— Routed networks for clients’ vms
— Bridged networks for managed/puppetized vms running services
— Bridged networks for client dedicated vlans

GRNET ~okeanos clusters:

— Routed networks for clients’ vms, different vlans/subnets/routing
tables/interfaces for v4 and v6 :(

— A single vlan+bridge (prv0) for private networks via the mac-filtered
networks trick

gnt-networking: unified(?) ganeti networking software

Tha future?

« Open Vswitch can be spotted on the horizon. A

way to easily and scalably provide vlans over layer
3

e« No VRRP for ~okeanos vms, could we fix that?

« How to provision a vlan with public addresses to a
client?

« Cross DC networking ?
o Network announcements from servers?

Links

Bonding:
 https://www.kernel.org/doc/Documentation/networking/bonding.txt
 https://wiki.debian.org/Bonding

Linux bridges:
« https://developers.redhat.com/blog/2017/09/14/vlan-filter-support-on-bridge/
« https://vincent.bernat.im/en/blog/2017-linux-bridge-isolation

Networking technologies in Linux:

« https://events.linuxfoundation.org/sites/events/files/slides/2016%20-%20Linux%20Networking
%20explained_0.pdf

Gnt-networking:
« https://github.com/grnet/gnt-networking
Synnefo networks documentation:

« https://www.synnefo.org/docs/synnefo/latest/networks.html#flavors

